YANG Kun1,TU Qiu-ye1,WANG Wei1,CAI Yuan-hu1. Parameter Selection for Aeroengine Transient State Gas Path Analysis Based on Sequential Operating Points[J]. Journal of Propulsion Technology, 2019, 40(10): 2175-2182.
[1] Urban L A. Gas Path Analysis Applied to Turbine Engine Condition Monitoring[J]. Journal of Aircraft, 1973, 10(7): 400-406.
[2] Stamatis A, Mathioudakis K, Berios G, et al. Jet Engine Fault Detection with Discrete Operating Points Gas Path Analysis[J]. Journal of Propulsion and Power, 1991, 7(6): 1043-1048.
[3] Zedda M. Gas Turbine Engine and Sensor Fault Diagnosis[D]. UK: Cranfield University, 1999.
[4] Aretakis N, Mathioudakis K, Stamatis A. Non-Linear Engine Component Fault Diagnosis from a Limited Number of Measurements Using a Combinatorial Approach[R]. ASME GT-2002-30031.
[5] Merrington G L. Fault Diagnosis of Gas Turbine Engines from Transient Data[J]. Journal of Engineering for Gas Turbines and Power, 1989, 111(2): 237-243.
[6] Groenstedt T. Least Squares Based Transient Nonlinear Gas Path Analysis[R]. ASME GT-2005-68717.
[7] LI Y G. A Gas Turbine Diagnostic Approach with Transient Measurements[J]. Journal of Power and Energy, 2003, 217(A2): 169-177.
[8] Urban L A. Parameter Selection for Multiple Fault Diagnostics of Gas Turbine Engines[J]. Journal of Engineering for Power, 1975, 97(2): 225-230.
[9] Stamatis A, Mathioudakis K, Papailiou K. Optimal Measurement and Health Index Selection for Gas Turbine Performance Status and Fault Diagnosis[J]. Journal of Engineering for Gas Turbines and Power, 1992, 114(2): 209-216.
[10] Provost M J. The Use of Optimal Estimation Techniques in the Analysis of Gas Turbines[D]. UK: Cranfield University, 1994.
[11] Espa?a M D. On the Estimation Algorithm for Adaptive Performance Optimization of Turbofan Engines[R]. AIAA93-1823.
[12] Gr?nstedt T U J. Identifiability in Multi-point Gas Turbine Parameter Estimation Problems[R]. ASME GT-2002-30020.
[13] Ogaji S O T, Sampath S, Singh R, et al. Parameter Selection for Diagnosing a Gas-Turbine’s Performance-Deterioration[J]. Applied Energy, 2002, 73(1): 25-46.
[14] Mathioudakis K, Ph Kamboukos . Assessment of the Effectiveness of Gas Path Diagnostic Schemes[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(1): 57-63.
[15] McCusker J R, Danai K. Measurement Selection for Engine Transients by Parameter Signatures[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(12).
[16] Sowers T S, Kopasakis G, Simon D L. Application of the Systematic Sensor Selection Strategy for Turbofan Engine Diagnostics[R]. ASME GT-2008-50525.
[17] Borguet S, Léonard O. The Fisher Information Matrix as a Relevant Tool for Sensor Selection in Engine Health Monitoring[J]. International Journal of Rotating Machinery, 2008, (1).
[18] Simon D L, Rinehart A W. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(7).
[19] Mathioudakis K, Kamboukos P, Stamatis A. Turbofan Performance Deterioration Tracking Using Non-Linear Models and Optimization Techniques[R]. ASME GT-2002-30026.
[20] Doel D L. TEMPER-A Gas-Path Analysis Tool for Commercial Jet Engines[J]. Journal of Engineering for Gas Turbines and Power, 1994, 116(1): 82-89.
[21] Volponi A J. Gas Turbine Engine Health Management: Past, Present and Future Trends[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(5).
[22] Daubechies I. Ten Lectures on Wavelets[M]. USA: Society for Industrial and Applied Mathematics, 1992.
[23] Danai K, McCusker J R. Parameter Estimation by Parameter Signature Isolation in the Time-Scale Domain[J]. Journal of Dynamic Systems, Measurement, and Control, 2009, 131(4).